Selasa, 29 November 2011
Integral
INTEGRAL
Jika f(x) adalah fungsi yang differensiabel maka dx)x('fadalahc)x(f
A. Rumus Dasar
1. c1nx1n1dxnx dengan 1n
2. cxlndx1xdxx1
3. cxcosxdxsin
4. cxsinxdxcos
5. cxtanxdx2sec
6. cxcotxdx2csc
7. cxsecxdxtan.xsec
8. cxcscxdxcot.xcsc
B. Integral tentu
Jika maka c)x(gdx)x(f
)a(g)b(g)x(gdx)x(fbaba
C. Sifat-sifat integral
1. dx)x(gdx)x(fdx)x(g)x(f
2. dx)x(gdx)x(fdx)x(g)x(f
3. dx)x(fkdx)x(kf
4. dx)x(fdx)x(fabba
5. dx)x(fdx)x(fdx)x(fcacbba
6. 0dx)x(faax = ax = by = f(x)y = g(x)L = badx)x(g)x(f
D. Menghitung luas daerah
aby = f(x)xL= dx)x(fba
aby = f(x)xL= dx)x(fba
Irvan Dedy Bimbingan Belajar SMA Dwiwarna
E. Volume Benda Putar
Irvan Dedy Bimbingan Belajar SMA Dwiwarna
a b x y = f(x) v =
ba2dxy a b y x = f(y) v =
ba2dyx
F Integral Parsial
duvuvdvu
Jika f(x) adalah fungsi yang differensiabel maka dx)x('fadalahc)x(f
A. Rumus Dasar
1. c1nx1n1dxnx dengan 1n
2. cxlndx1xdxx1
3. cxcosxdxsin
4. cxsinxdxcos
5. cxtanxdx2sec
6. cxcotxdx2csc
7. cxsecxdxtan.xsec
8. cxcscxdxcot.xcsc
B. Integral tentu
Jika maka c)x(gdx)x(f
)a(g)b(g)x(gdx)x(fbaba
C. Sifat-sifat integral
1. dx)x(gdx)x(fdx)x(g)x(f
2. dx)x(gdx)x(fdx)x(g)x(f
3. dx)x(fkdx)x(kf
4. dx)x(fdx)x(fabba
5. dx)x(fdx)x(fdx)x(fcacbba
6. 0dx)x(faax = ax = by = f(x)y = g(x)L = badx)x(g)x(f
D. Menghitung luas daerah
aby = f(x)xL= dx)x(fba
aby = f(x)xL= dx)x(fba
Irvan Dedy Bimbingan Belajar SMA Dwiwarna
E. Volume Benda Putar
Irvan Dedy Bimbingan Belajar SMA Dwiwarna
a b x y = f(x) v =
ba2dxy a b y x = f(y) v =
ba2dyx
F Integral Parsial
duvuvdvu
Langganan:
Posting Komentar (Atom)
0 komentar:
Posting Komentar