Selasa, 29 November 2011
Integral
INTEGRAL
Jika f(x) adalah fungsi yang differensiabel maka dx)x('fadalahc)x(f
A. Rumus Dasar
1. c1nx1n1dxnx dengan 1n
2. cxlndx1xdxx1
3. cxcosxdxsin
4. cxsinxdxcos
5. cxtanxdx2sec
6. cxcotxdx2csc
7. cxsecxdxtan.xsec
8. cxcscxdxcot.xcsc
B. Integral tentu
Jika maka c)x(gdx)x(f
)a(g)b(g)x(gdx)x(fbaba
C. Sifat-sifat integral
1. dx)x(gdx)x(fdx)x(g)x(f
2. dx)x(gdx)x(fdx)x(g)x(f
3. dx)x(fkdx)x(kf
4. dx)x(fdx)x(fabba
5. dx)x(fdx)x(fdx)x(fcacbba
6. 0dx)x(faax = ax = by = f(x)y = g(x)L = badx)x(g)x(f
D. Menghitung luas daerah
aby = f(x)xL= dx)x(fba
aby = f(x)xL= dx)x(fba
Irvan Dedy Bimbingan Belajar SMA Dwiwarna
E. Volume Benda Putar
Irvan Dedy Bimbingan Belajar SMA Dwiwarna
a b x y = f(x) v =
ba2dxy a b y x = f(y) v =
ba2dyx
F Integral Parsial
duvuvdvu
Jika f(x) adalah fungsi yang differensiabel maka dx)x('fadalahc)x(f
A. Rumus Dasar
1. c1nx1n1dxnx dengan 1n
2. cxlndx1xdxx1
3. cxcosxdxsin
4. cxsinxdxcos
5. cxtanxdx2sec
6. cxcotxdx2csc
7. cxsecxdxtan.xsec
8. cxcscxdxcot.xcsc
B. Integral tentu
Jika maka c)x(gdx)x(f
)a(g)b(g)x(gdx)x(fbaba
C. Sifat-sifat integral
1. dx)x(gdx)x(fdx)x(g)x(f
2. dx)x(gdx)x(fdx)x(g)x(f
3. dx)x(fkdx)x(kf
4. dx)x(fdx)x(fabba
5. dx)x(fdx)x(fdx)x(fcacbba
6. 0dx)x(faax = ax = by = f(x)y = g(x)L = badx)x(g)x(f
D. Menghitung luas daerah
aby = f(x)xL= dx)x(fba
aby = f(x)xL= dx)x(fba
Irvan Dedy Bimbingan Belajar SMA Dwiwarna
E. Volume Benda Putar
Irvan Dedy Bimbingan Belajar SMA Dwiwarna
a b x y = f(x) v =
ba2dxy a b y x = f(y) v =
ba2dyx
F Integral Parsial
duvuvdvu
Langganan:
Posting Komentar (Atom)
1 komentar:
Caesars to bring casino floor back to full capacity as part of
› news › 제천 출장샵 caesars-to-bring-casino › news › caesars-to-bring-casino Sep 21, 2021 서울특별 출장마사지 — Sep 세종특별자치 출장안마 21, 2021 Caesars Entertainment 화성 출장마사지 said it will reopen its Hollywood Casino & Resort in Pennsylvania after a 12-month 나주 출장샵 shutdown.
Posting Komentar